Mathur, N. D. et al. Magnetically mediated superconductivity in heavy fermion compounds. Nature 394, 39–43 (1998).
Gegenwart, P., Si, Q. & Steglich, F. Quantum criticality in heavy-fermion metals. Nat. Phys. 4, 186–197 (2008).
Yazdani, A., da Silva Neto, E. H. & Aynajian, P. Spectroscopic imaging of strongly correlated electronic states. Annu. Rev. Condens. Matter Phys. 7, 11–33 (2016).
Löhneysen, H. V., Rosch, A., Vojta, M. & Wölfle, P. Fermi-liquid instabilities at magnetic quantum phase transitions. Rev. Mod. Phys. 79, 1015–1075 (2007).
Stewart, G. R. Heavy-fermion systems. Rev. Mod. Phys. 56, 755 (1984).
Jiao, L. et al. Chiral superconductivity in heavy-fermion metal UTe2. Nature 579, 523–527 (2020).
Shishido, H. et al. Tuning the dimensionality of the heavy fermion compound CeIn3. Science 327, 980–983 (2010).
Mizukami, Y. et al. Extremely strong-coupling superconductivity in artificial two-dimensional Kondo lattices. Nat. Phys. 7, 849–853 (2011).
Naritsuka, M. et al. Tuning the pairing interaction in a d-wave superconductor by paramagnons injected through interfaces. Phys. Rev. Lett. 120, 187002 (2018).
Vaňo, V. et al. Artificial heavy fermions in a van der Waals heterostructure. Nature 599, 582–586 (2021).
Jang, B. G., Lee, C., Zhu, J. X. & Shim, J. H. Exploring two-dimensional van der Waals heavy-fermion material: data mining theoretical approach. npj 2D Mater. Appl. 6, 80 (2022).
Novoselov, K. S., Mishchenko, A., Carvalho, A. & Castro Neto, A. H. 2D materials and van der Waals heterostructures. Science 353, aac9439 (2016).
Fisk, Z., Sarrao, J. L., Smith, J. L. & Thompson, J. D. The physics and chemistry of heavy fermions. Proc. Natl Acad. Sci. 92, 6663–6667 (1995).
Wirth, S. & Steglich, F. Exploring heavy fermions from macroscopic to microscopic length scales. Nat. Rev. Mater. 1, 16051 (2016).
Andres, K., Graebner, J. E. & Ott, H. R. 4f-virtual-bound-state formation in CeAl3 at low temperatures. Phys. Rev. Lett. 35, 1779 (1975).
Auerbach, A. & Levin, K. Kondo bosons and the Kondo lattice: microscopic basis for the heavy Fermi liquid. Phys. Rev. Lett. 57, 877 (1986).
Park, T. et al. Hidden magnetism and quantum criticality in the heavy fermion superconductor CeRhIn5. Nature 440, 65–68 (2006).
Kimura, N. et al. Pressure-induced superconductivity in noncentrosymmetric heavy-fermion CeRhSi3. Phys. Rev. Lett. 95, 247004 (2005).
Steppke, A. et al. Ferromagnetic quantum critical point in the heavy-fermion metal YbNi4(P1−xAsx)2. Science 339, 933–936 (2013).
Paschen, S. et al. Hall-effect evolution across a heavy-fermion quantum critical point. Nature 432, 881–885 (2004).
Monthoux, P., Pines, D. & Lonzarich, G. Superconductivity without phonons. Nature 450, 1177–1183 (2007).
Izawa, K. et al. Angular position of nodes in the superconducting gap of quasi-2D heavy-fermion superconductor CeCoIn5. Phys. Rev. Lett. 87, 057002 (2001).
Settai, R. et al. Quasi-two-dimensional Fermi surfaces and the de Haas–van Alphen oscillation in both the normal and superconducting mixed states of CeCoIn5. J. Phys. Condens. Matter 13, L627 (2001).
Hegger, H. et al. Pressure-induced superconductivity in quasi-2D CeRhIn5. Phys. Rev. Lett. 84, 4986 (2000).
Li, Y. S. et al. Growth and properties of heavy fermion CeCu2Ge2 and CeFe2Ge2. Appl. Phys. Lett. 99, 042507 (2011).
Ishii, T. et al. Tuning the magnetic quantum criticality of artificial superlattices CeRhIn5/YbRhIn5. Phys. Rev. Lett. 116, 206401 (2016).
Devarakonda, A. et al. Clean 2D superconductivity in a bulk van der Waals superlattice. Science 370, 231–237 (2020).
Levy, P. M. & Zhang, S. Crystal-field splitting in Kondo systems. Phys. Rev. Lett. 62, 78 (1989).
Brouet, V. et al. Angle-resolved photoemission study of the evolution of band structure and charge density wave properties in RTe3 (R = Y, La, Ce, Sm, Gd, Tb, and Dy). Phys. Rev. B 77, 235104 (2008).
Ru, N. & Fisher, I. R. Thermodynamic and transport properties of YTe3, LaTe3, and CeTe3. Phys. Rev. B 73, 033101 (2006).
Ramires, A. & Lado, J. L. Emulating heavy fermions in twisted trilayer graphene. Phys. Rev. Lett. 127, 026401 (2021).
Zhao, W. et al. Gate-tunable heavy fermions in a moiré Kondo lattice. Nature 616, 61–65 (2023).
Mattausch, H. & Simon, A. Si6, Si14, and Si22 rings in iodide silicides of rare earth metals. Angew. Chem. Int. Ed. 37, 499–502 (1998).
White, B. D., Thompson, J. D. & Maple, M. B. Unconventional superconductivity in heavy-fermion compounds. Phys. C 514, 246–278 (2015).
Zhang, S. et al. Electronic structure and magnetism in the layered triangular lattice compound CeAuAl4Ge2. Phys. Rev. Mater. 1, 044404 (2017).
de Boer, F. R. et al. CeCu2Ge2: magnetic order in a Kondo lattice. J. Magn. Magn. Mater. 63-64, 91–94 (1987).
Thamizhavel, A. et al. Anisotropic magnetic properties of a pressure-induced superconductor Ce2Ni3Ge5. J. Phys. Soc. Jpn 74, 2843–2848 (2005).
Kashiba, S., Maekawa, S., Takahashi, S. & Tachiki, M. Effect of crystal field on Kondo resistivity in Ce compounds. J. Phys. Soc. Jpn 55, 1341–1349 (1986).
Seiro, S. et al. Evolution of the Kondo lattice and non-Fermi liquid excitations in a heavy-fermion metal. Nat. Commun. 9, 3324 (2018).
Aynajian, P. et al. Visualizing heavy fermions emerging in a quantum critical Kondo lattice. Nature 486, 201–206 (2012).
Patil, S. et al. ARPES view on surface and bulk hybridization phenomena in the antiferromagnetic Kondo lattice CeRh2Si2. Nat. Commun. 7, 11029 (2016).
Chen, Q. Y. et al. Electronic structure study of LaCoIn5 and its comparison with CeCoIn5. Phys. Rev. B 100, 35117 (2019).
Reinert, F. et al. Temperature dependence of the Kondo resonance and its satellites in CeCu2Si2. Phys. Rev. Lett. 87, 106401 (2001).
Okuma, R., Ritter, C., Nilsen, G. J. & Okada, Y. Magnetic frustration in a van der Waals metal CeSiI. Phys. Rev. Mater. 5, L121401 (2021).
Doniach, S. The Kondo lattice and weak antiferromagnetism. Phys. B+C 91, 231–234 (1977).
Das, P. et al. Magnitude of the magnetic exchange interaction in the heavy-fermion antiferromagnet CeRhIn5. Phys. Rev. Lett. 113, 246403 (2014).
Ali, M. N. et al. Large, non-saturating magnetoresistance in WTe2. Nature 514, 205–208 (2014).
Falicov, L. M. & Sievert, P. R. Magnetoresistance and magnetic breakdown. Phys. Rev. Lett. 12, 558 (1964).
Fert, A. & Levy, P. M. Theory of the Hall effect in heavy-fermion compounds. Phys. Rev. B 36, 1907 (1987).
Navarro-Moratalla, E. et al. Enhanced superconductivity in atomically thin TaS2. Nat. Commun. 7, 11043 (2016).
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 42, 339–341 (2009).
Sheldrick, G. M., IUCr. SHELXT – Integrated space-group and crystal-structure determination. Acta Cryst. A 71, 3–8 (2015).
Sheldrick, G. M., IUCr. Crystal structure refinement with SHELXL. Acta Cryst. C 71, 3–8 (2015).
Stinson, H. T. et al. Imaging the nanoscale phase separation in vanadium dioxide thin films at terahertz frequencies. Nat. Commun. 9, 3604 (2018).
Desgranges, H.-U. & Schotte, K. D. Specific heat of the Kondo model. Phys. Lett. A 91, 240–242 (1982).
Scheie, A. PyCrystalField: software for calculation, analysis and fitting of crystal electric field Hamiltonians. J. Appl. Crystallogr. 54, 356–362 (2021).
Aoki, D., Knafo, W. & Sheikin, I. Heavy fermions in a high magnetic field. C. R. Phys. 14, 53–77 (2013).
Kitazawa, H., Eguchi, S. & Kido, G. Metamagnetic transition in geometrically frustrated system TbPd1−xNixAl. Phys. B 359–361, 223–225 (2005).
Cable, J. W., Wilkinson, M. K., Wollan, E. O. & Koehler, W. C. Neutron diffraction investigation of the magnetic order in MnI2. Phys. Rev. 125, 1860 (1962).
Kurumaji, T. et al. Magnetic-field induced competition of two multiferroic orders in a triangular-lattice helimagnet MnI2. Phys. Rev. Lett. 106, 167206 (2011).
Kurumaji, T. et al. Magnetoelectric responses induced by domain rearrangement and spin structural change in triangular-lattice helimagnets NiI2 and CoI2. Phys. Rev. B 87, 014429 (2013).
Aoki, D. et al. Decoupling between field-instabilities of antiferromagnetism and pseudo-metamagnetism in Rh-doped CeRu2Si2 Kondo lattice. J. Phys. Soc. Jpn 81, 034711 (2012).
An, L. et al. Magnetoresistance and Shubnikov–de Haas oscillations in layered Nb3SiTe6 thin flakes. Phys. Rev. B 97, 235133 (2018).
Rappe, A. M., Rabe, K. M., Kaxiras, E. & Joannopoulos, J. D. Optimized pseudopotentials. Phys. Rev. B 41, 1227 (1990).
Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758 (1999).
Dal Corso, A. Pseudopotentials periodic table: from H to Pu. Comput. Mater. Sci. 95, 337–350 (2014).
Anisimov, V. I., Aryasetiawan, F. & Lichtenstein, A. I. First-principles calculations of the electronic structure and spectra of strongly correlated systems: the LDA + U method. J. Phys. Condens. Matter 9, 767 (1997).
Liechtenstein, A. I., Katsnelson, M. I., Antropov, V. P. & Gubanov, V. A. Local spin density functional approach to the theory of exchange interactions in ferromagnetic metals and alloys. J. Magn. Magn. Mater. 67, 65–74 (1987).
Liechtenstein, A. I., Katsnelson, M. I. & Gubanov, V. A. Exchange interactions and spin-wave stiffness in ferromagnetic metals. J. Phys. F: Met. Phys. 14, L125 (1984).
He, X., Helbig, N., Verstraete, M. J. & Bousquet, E. TB2J: a Python package for computing magnetic interaction parameters. Comput. Phys. Commun. 264, 107938 (2021).
Zhao, S. Y. F. et al. Sign-reversing Hall effect in atomically thin high-temperature Bi2.1Sr1.9CaCu2.0O8+δ superconductors. Phys. Rev. Lett. 122, 247001 (2019).
Moll, P. J. W. et al. Field-induced density wave in the heavy-fermion compound CeRhIn5. Nat. Commun. 6, 6663 (2015).
Bachmann, M. D. et al. Spatial control of heavy-fermion superconductivity in CeIrIn5. Science 366, 221–226 (2019).
Source link